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ABSTRACT 
Context sensing on smartphones is often used to understand user 
behaviour. Amongst the many available sensors, the collection of 
text is crucial due to its richness. However, previous work has been 
limited to collecting text only from keyboard input, or intermittently 
collecting screen text indirectly by taking screenshots and applying 
optical character recognition. Here, we present a novel software 
sensor that unobtrusively and continuously captures all screen 
text on smartphones. We conducted a validation study with 21 
participants over a two-week period, where they used our software 
on their personal smartphones. Our fndings demonstrate how data 
from our sensor can be used to understand user behaviour and 
categorise mobile apps. We also show how smartphone sensing can 
be enhanced by using our sensor in conjunction with other sensors. 
We discuss the strengths and limitations of our sensor, highlighting 
potential areas for improvement and providing recommendations 
for its use. 
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1 INTRODUCTION 
We present a new smartphone sensor that captures all screen text. 
This sensor can make a valuable contribution to the already vast 
amounts of data generated from smartphone interactions. Under-
standing user context via smartphone sensing [42] has in recent 
years led to breakthroughs in disciplines that study human be-
haviour, such as health [9, 81, 105] and education [92, 102, 120]. 

Yet, despite the rich sensor data that smartphones make available 
for context sensing, most of the sensed data is an ambiguous proxy 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

CHI ’24, May 11–16, 2024, Honolulu, HI, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0330-0/24/05 
https://doi.org/10.1145/3613904.3642347 

for the actual behaviour of interest [35]. Smartphone sensors such 
as location, applications running, and accelerometer/gyroscope, 
have been shown to correlate well with human behaviour, but must 
always be analysed in tandem with some alternative source of 
"ground truth". One crucial sensor that overcomes this limitation is 
the collection of screen text from smartphones, which can itself act 
as a basis for "ground truth" in understanding human behaviour 
[22]. 

So far, there have been two main ways of collecting text data 
from smartphones. One approach is to collect typing & keystroke 
data from smartphones [42]. Such data can provide insights into 
health-related aspects such as emotion [95] and stress [91], as well 
as infer broader context, including an individual’s environment, 
social context, or possible distractions [4]. An important drawback 
of this approach is that the vast majority of screen text is not typed 
by users, and therefore is not captured. To tackle this, an alternative 
approach is to capture screenshots from mobile devices with high 
frequency [86]. These screenshots – or Screenomes – are typically 
taken every few seconds, providing a detailed visual record of 
individuals’ smartphone usage. This technique enables the analysis 
of broad aspects of smartphone use, but has multiple limitations due 
to the use of computer vision techniques to analyse and annotate 
the screenshots. The main drawbacks include the computational 
cost, scalability challenges, and transcription errors introduced by 
the optical character recognition analysis. Additionally, screenomes 
capture only the phone activity of users, omitting other contextual 
elements beyond the smartphone such as their location. The lack of 
this additional information may reduce the accuracy of contextual 
inference. 

We overcome these limitations by developing a software sensor 
that continuously and unobtrusively captures all screen text on 
smartphones. Our approach uses Android’s accessibility services to 
capture textual elements on-screen, format the data, and transfer 
this data to a database for analysis. The use of the accessibility API 
requires minimal data processing and energy to collect the text, 
does not sufer from error-prone recognition or gaps in the record-
ings, and ofers precise data that can act as a source of ground truth 
in understanding human behaviour. Furthermore, the integration of 
our sensor within the AWARE-Light framework [106] facilitates the 
seamless, concurrent capturing of screen text alongside a multitude 
of other sensors, providing researchers with an enhanced sensing 
tool that allows easy access to collecting data and running studies 
using screen text. The capabilities of the screen text sensor and its 
integration in AWARE-Light introduces a novel dimension to smart-
phone sensing that builds on existing methods. Firstly, it captures a 
broader range of smartphone interactions compared to keystrokes. 
Keystrokes refect only the typing activities of users and reveal little 
information about the context of their typed content. For instance, 
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discerning a user’s intention solely through keystrokes poses chal-
lenges due to the absence of information about the context of their 
searches or responses. This limitation is addressed by screen text, 
which captures entire conversations, ofering a more comprehen-
sive context for user interactions. Secondly, our screen text sensor 
is fully integrated with AWARE-Light, a software that captures data 
from diverse smartphone sensors such as the accelerometer and 
GPS. By collecting and analysing screen text alongside other sensor 
data, a broader context beyond the smartphone such as user move-
ment and location can be inferred and correlated with their screen 
content. In contrast to screenomes, which provide only information 
about smartphone use, the integration of our screen text sensor 
within a broader sensor framework allows for a comprehensive 
analysis of both digital and non-digital activities in tandem, provid-
ing researchers with a more comprehensive understanding of user 
behaviour. 

In this paper we present a two-week validation study with 21 
participants who used our software in their daily lives. The study 
aims to identify the strengths and weaknesses of this new sensor in 
realistic scenarios and demonstrate its potential in understanding 
human behaviour. 

Our paper makes multiple contributions: 
• We present a novel smartphone sensor that captures screen 
text, which integrates with the AWARE-Light framework. 

• We demonstrate how the sensor captures and presents tex-
tual information from smartphone interactions. 

• We show how this sensor can be used in tandem with other 
sensors for further contextual inference. 

• We highlight the strengths and weaknesses of this sensor, 
and provide recommendations for its use in understanding 
behaviour. 

2 RELATED WORK 

2.1 Context-aware smartphone sensing of 
behaviour 

Smartphone sensing has been widely used to understand human 
context and behaviour in various domains. The combination of 
smartphone sensing capabilities and their widespread usage makes 
them efective tools for capturing human behaviour unobtrusively 
[47, 63]. Integrating data obtained from multiple smartphone sen-
sors enables a comprehensive understanding of a person’s surround-
ings, activities, and behaviours [19, 30]. This understanding can be 
used to inform recommendations based on the user’s context. 

Healthcare extensively utilises smartphone sensor data. For ex-
ample, research in the feld of digital phenotyping has shown that 
GPS could be employed to assess mental health states [16, 18, 
31, 74, 78, 89, 109, 111, 125], sociability [13, 46, 51, 112], overall 
health status and well-being [8, 36, 57, 64, 76], and personality [58]. 
GPS tracking enables the study of movement as a health indica-
tor, such as understanding that people sufering from depression 
tend to travel less [53], whereas people who travel more may have 
larger social networks [97], which in turn increases happiness [27]. 
Similarly, smartphone accelerometers have been studied to clas-
sify physical activity occurrence [7, 54, 65–67, 96, 114, 118] and 
sleep [50, 79], both informative of lifestyle. Accelerometer data 
captures precise movement patterns and abnormalities in physical 

behaviour. Additionally, smartphone app usage and communication 
data can be used to inform context in health, such as monitoring 
student behaviour and performance [21, 34, 110], and mental health 
[12, 40, 83, 94]. These software sensors provide insights into peo-
ple’s interactions with diferent content types, aiding in the design 
of health recommendations and interventions. 

Smartphone sensing strategies have also been extensively ex-
plored in education, often incorporating multiple sensors. WoBaLearn 
leverages the smartphone’s light sensor and microphone to deliver 
teaching content in work-based learning, tailoring support to learn-
ers’ individual educational needs, characteristics, and circumstances 
[127]. Another approach utilises GPS data in a personalised context-
aware recommendation learning system, notifying learners about 
nearby learning materials based on their current location [120]. 
Similarly, CALMS employs ontologies that utilise GPS data and 
additional contextual information, such as academic profles and 
time, to ofer context-relevant academic content. This approach has 
shown positive efects on student grades and user satisfaction [38]. 
In a fipped classroom environment, Louhab et al. [73] collected 
information from learners’ mobile devices, including available soft-
ware, screen size, battery level, and Internet connectivity, to deter-
mine the optimal format for delivering course content. Students 
using the context-aware application expressed high satisfaction 
with the content delivery. 

Despite the availability of numerous smartphone sensors and 
the data they provide, combining these sensor data yields only an 
approximate measure of an individual’s smartphone usage. This 
limitation arises from the inherent constraints in capturing precise 
content from existing smartphone sensors. Although user context 
can be inferred from these sensor data, the inability to accurately 
interpret specifc user actions introduces the risk of making erro-
neous assumptions about their context. This limitation presents a 
signifcant challenge in achieving a comprehensive understanding 
of users’ smartphone interactions, necessitating further research to 
enhance the precision and accuracy of context inference in smart-
phone sensing applications. 

2.2 Text corpora from smartphones 
In addition to utilising existing smartphone sensors, analysing tex-
tual screen content on smartphones ofers another avenue for un-
derstanding user context. The proliferation of text-based commu-
nication platforms and applications has generated a vast amount 
of textual data, which can provide valuable insights into users’ 
contexts [15, 33, 121]. User-generated text, such as social media 
posts, can provide information about the user’s personality traits, 
such as extraversion or agreeableness [5]. Additionally, the char-
acteristics of written text can serve as indicators of demographics, 
such as younger individuals using more feeling-related words when 
describing artwork [3]. Therefore, analysing textual information, in-
cluding browsing content and communications, holds the potential 
to enhance our understanding of users’ behaviour and preferences. 

Keystroke sensing can be used to analyse how individuals type 
on their smartphones, aiming to infer information about their con-
text and behaviour. Tahir et al. [103] demonstrated that employing 
machine learning methods on keyboard character input and key-
stroke data achieves high accuracy in identifying emotions, such as 
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happiness, sadness, and anger, from short text inputs. The number 
of negative words typed by a user has shown a strong correlation 
with increased perceived stress and reduced sleep duration [25], 
suggesting that the sentiment expressed in the text generated by 
an individual may serve as a predictor of their well-being. Fur-
thermore, keystroke analysis has captured variances in semantic 
content across diferent texting platforms. For instance, based on 
the Linguistic Inquiry and Word Count (LIWC) 2022 dictionary, it 
was found that people prefer to share content such as books and 
songs, and discuss leisure activities on Facebook, whereas they were 
more task-oriented when communicating via SMS [71]. Analysing 
text generated from keyboard typing also allows for measuring mis-
takes made while typing and the timing between keystrokes. These 
metrics have been suggested to be indicators of stress, as individuals 
experiencing stress tend to type faster and make more errors [29]. 
Similarly, the accuracy and speed of typing on a smartphone key-
board can provide insights into abnormal upper extremity motor 
coordination, eye-hand coordination, and manual dexterity, which 
can be relevant in assessing certain conditions or diseases [48]. 

While keystroke sensing ofers insights into how individuals 
produce textual content, it will not in general provide informa-
tion about the types of content they consume or interact with. To 
address this, smartphone screenomes have emerged as a tool for 
capturing all textual interactions. Screenomes consist of sequen-
tial high-frequency screenshots taken every 5 seconds, capturing 
individuals’ day-to-day digital experiences and facilitating anal-
ysis of their engagement with the digital environment [82]. The 
Screenomics framework studied screenomes extensively, employing 
optical character recognition (OCR) and image analysis to extract 
text and image content from the screenshots, respectively [82, 85]. 
Textual information can be extracted from each screenshot with an 
accuracy of 74% using OpenCV for image pre-processing and Tesser-
act for OCR [85]. This allows for a comprehensive understanding 
of human behaviour on smartphones, including content viewing 
patterns across various categories and platforms [85], content en-
gagement at diferent times of the day [22], and task-switching 
behaviours [119], among other directions of exploration. Screen-
Life Capture is an open-source application that reduces the burden 
of collecting screenome data, allowing researchers to easily run 
their own screenome studies [122]. It provides the fexibility for 
participants to start or stop screen capturing as desired, ensuring 
their comfort and control over data tracking. 

Extracting textual content from smartphone screenshots poses 
challenges due to the content being displayed in multiple fonts 
and font sizes, resulting in resource-intensive and often inaccurate 
extraction processes. For instance, Chiatti et al. [28] reported that 
icons can be incorrectly identifed as characters, such as the Blue-
tooth icon ( ) being interpreted as a "$" sign. These additional time 
and computational requirements limit the scalability of studying 
screenomes for a larger population over an extended period. These 
inaccuracies in text recognition can potentially compromise the 
precision of observed trends. Additionally, the 5-second interval 
between screenome screenshots may miss shorter interactions such 
as scrolling through text, changing a song, or checking notifcations. 
Given the decreasing attention spans of humans leading to content 
consumption changing more rapidly [101], the omission of even 

brief interaction windows could signifcantly impact the overall 
understanding of an individual’s context. 

To address these challenges, we developed a lightweight sen-
sor to capture textual content on smartphone screens. Our sensor 
captures textual information directly from the screen in real-time, 
eliminating the need for additional machine learning processing. 
Data is collected whenever the sensor is activated, enabling the 
capture of even brief interactions. Compared to state-of-the-art 
methods, this approach improves both the accuracy and rate of 
data capture while reducing computational demands. We demon-
strate the technology and capabilities of our sensor in the following 
sections. 

3 METHODOLOGY 

3.1 The Screen Text Sensor 
We have developed a sensor to continuously capture screen text on 
Android smartphones. The sensor has been designed to be part of 
the AWARE-Light smartphone sensing system [106]. Built upon the 
AWARE framework [42], AWARE-Light enables the collection of 
data from various smartphone sensors, including keystrokes, screen 
status (locked/unlocked, on/of), and geolocation data. The applica-
tion features a user interface that facilitates study sign-up, displays 
participant information, and provides a list of the sensors being 
captured once the participant joins the study. With the participant’s 
consent, AWARE-Light passively captures data from the selected 
sensors without requiring further input or intervention from the 
participant. By default, the data is transmitted to our own MySQL 
database in the cloud. In keeping with AWARE-Light’s open-source 
availability, our sensor is also openly available for other researchers 
to use and conduct studies 1. The sensor works in a similar way to 
screen-readers, but it stores the screen text instead of vocalising 
it. Specifcally, we rely on Android’s accessibility service, which 
notifes our software whenever the user interface updates. This 
can happen when users actively scroll on their phone, type, unlock 
their screen, or simply when the application updates its content. 

When our software is notifed of a screen update, we receive 
a data object that contains a tree representation for all on-screen 
UI elements. From this, we are able to extract the text of each UI 
element, the screen (x,y) coordinates of the UI element, and the 
precise timestamp when this was shown on the screen. Because our 
software is notifed of all screen updates, it is often the case that 
although the screen has updated, the actual text has remained the 
same. This can lead to a large amount of duplicate data. Therefore, 
a fltering mechanism we introduced is to discard screen updates if 
the text labels remain unchanged. 

Due to the way AWARE-Light operates, the data from our sen-
sor is "fattened" into a single long string. Every time the screen 
updates, we generate and store this string in a database. Because 
the information originally comes in the form of a tree, we also 
store special markers in the string to refect the delimitation of UI 
elements. 

1AWARE-Light can be downloaded from https://github.com/awareframework/aware-
light-client, of which our screen text sensor is one of the available sensors. 

https://github.com/awareframework/aware-light-client
https://github.com/awareframework/aware-light-client
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3.2 Textual features 
For this paper, we developed some further terminology to describe 
the data collected by this sensor. This is partly due to how the 
operating system provides us with the screen text data. To the best 
of our knowledge, there is a lack of established terminology to 
characterise such screen text. Hence, we propose a set of terms 
to describe screen text elements, which we refer to later in our 
analysis. 

A screen refers to a single snapshot of the user’s phone screen 
at any time. Each screen contains all text content present on the 
phone screen, which may include news articles, comment text, 
labels, or links in the navigation bar. The text for each screen is 
represented as one data entry, where it is concatenated into a single 
long string and delimited. A new screen is captured and stored 
only if its text content is diferent from the previous screen. Fig. 
1 provides examples of screens and their contents. The operating 
system provides us with the Application that is associated with the 
screen (as a package name). 

A phrase is a chunk of text within a screen. Defned within 
Android as a text node, this is the text that belongs to a UI element. 
A phrase can contain multiple words, and the length of a phrase can 
vary substantially since diferent applications use text diferently. 
Phrases are visually distinct on screen, as demonstrated in Fig. 1. 
Our sensor does not attempt to make any inference regarding the 
relationship between phrases, and simply delimits them according 
to what the operating system provides us. 

For each phrase, we record its screen (x,y) coordinates as pro-
vided by the operating system. Specifcally, the coordinates are 
measured in pixels, and we record the top-left and bottom-right 
coordinates of the rectangular bounding box of the phrase. Fig. 2 
demonstrates how each captured phrase and its position can be 
used to reconstruct the layout of text content on a screen. 

Finally, all phrases in a screen are concatenated into one text 
string along with their positions. Each phrase and its position is 
delimited using double pipes (||) to facilitate individual analysis. 

3.3 Text metrics 
We use a number of metrics to quantify patterns in the text data 
we have collected. We consider the total number of screens as a 
measure of "information update". This number depends on how 
often participant’s phones update the information they display. 

We also use the number of phrases per screen as a measure 
of "information density", and we use it to quantify the volume 
of information. There are multiple ways to quantify information Figure 2: Reconstruction of a screen and its phrases. The 
density, including word count or character count. However, we original screen is shown on the left, while the reconstruction 
decided to use phrases per screen because it captures the underlying is on the right. 
complexity of the UIs that participants interact with. 

We also use the metric of phrase diference to quantify "infor-
mation churn", or a measure of how much the screen has changed. For example, the phrase diference between a screen with the 
The phrase diference between two sequential screens is defned as phrases ["A", "B"] and another screen with ["B", "C", "D"]
the set of unique phrases appearing in only one of the two screens. contains 3 phrases, as each phrase in the set {"A", "C", "D"}
Therefore, given we have screen � with a set of phrases �� and appear in only one screen. Fig. 3 compares two screens and visu-
screen � with a set of phrases �� , we can calculate the phrase alises their phrase diference. We use set diference as our measure 
diference using the following set diference formula: because duplicate phrases within a screen are uncommon, hence 

discarding duplicates will have a negligible impact on measuring 
�� � � ������ = (�� ∪ �� ) − (�� ∩ �� ) overall content change between screens. 

Figure 1: Examples of what a Screen and Phrase looks like 
on-screen. Each highlighted rectangle represents a single 
entity. 
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We note that the metrics we present are independent. An ap-
plication may have dense or sparse screens, which may update 
frequently or not, and those updates can bring about small or large 
changes. 

Figure 3: Illustration of how we calculate Phrase Diference 
between two screens. The highlighted phrases are the ones 
that difer between the two screens. 

3.4 Privacy implications 
Collecting data from smartphone usage comes with privacy impli-
cations given the sensitive nature of the personal user data that is 
being collected. The need to accommodate user privacy preferences 
and secure user data is particularly salient with the screen text 
sensor, given the highly sensitive and revealing nature of its data. 
To address privacy concerns, we designed our screen text sensor to 
be easily disabled and re-enabled at the participants’ discretion. The 
software also displays a persistent notifcation that informs the user 
whenever data collection is taking place, ensuring that participants 
are aware that their phone usage is being studied. These controls 
give participants control over the data they choose to share and 
when they share it, and the constant notifcation of data collection 
reminds them to disable any sensors they do not want tracked. Ad-
ditionally, we implemented Android’s built-in password-detection 
method to identify instances where participants were entering or 
viewing passwords. In such cases, we do not capture the correspond-
ing screen text data. For studies that do not require all screen text, 
our sensor allows researchers to specify only certain applications 
to collect data from and exclude others. In doing so, participants 
have the assurance that sensitive information from specifc apps 
or activities will not be recorded. This selective approach to data 
collection not only preserves participant confdentiality but also 
encourages broader participation in studies, as individuals may be 
more inclined to contribute data when they have control over which 
aspects of their smartphone interactions are being captured. While 
these measures may result in minor data loss, they are essential 
for minimising participant burden and safeguarding their privacy. 
Beyond the privacy and security features of AWARE-Light and the 
screen text sensor, it is incumbent upon study administrators to 
implement a setup that ensures the secure transmission and storage 
of screen text data. 

4 EVALUATION 
We conducted a feld study to collect a comprehensive and real-
istic dataset comprising smartphone screen text and sensor data. 
Throughout a two-week study period, we collected textual data 
displayed on participants’ smartphone screens. We also collected a 
range of additional sensor data to further inform our understanding 
of user context, including applications, battery, Bluetooth, commu-
nication (calls and SMS), keyboard, location, network, notifcations, 
proximity, screen state, and Wi-Fi data. Participants used their 
smartphones in a natural way over the two-week period. We also 
used Experience Sampling to understand participants’ activities, 
and questionnaires to gauge their privacy concerns. 

The study was approved by the University of Melbourne’s Ofce 
of Research Ethics and Integrity. Participants were provided with a 
compensation of $65 AUD upon successfully completing two weeks 
of data collection and a debriefng questionnaire. 

4.1 Participants 
We recruited 21 participants (10 male, 11 female) for our study (de-
mographics listed in the Appendix). The participants were between 
the ages of 18 and 54, with a median age group of between 25 to 
34 years. Participants had a highest education level of a current 
university student (� = 3) Bachelor’s degree (� = 10), Master’s 
degree (� = 7), or Doctoral degree (� = 1), with a median annual 
household income of between $40,000 to $49,999 AUD. Participants 
reported a median daily phone usage time of 3 to 4 hours. We 
considered only English-speaking participants who regularly use 
their smartphones. We recruited only participants using Android 
devices (given that AWARE-Light runs only on Android), with an 
Android version from 9 to 13. Participants used a variety of devices 
from diferent manufacturers: Samsung (� = 10), Google (� = 5), 
OnePlus (� = 2), Huawei (� = 1), Motorola (� = 1), OPPO (� = 1), 
and Xiaomi (� = 1). 

4.2 Experience Sampling Method 
To gain a deeper understanding of user context, we collected Expe-
rience Sampling Method (ESM) responses from participants. ESM 
involves measuring participants’ behaviour, thoughts, and feelings 
during their day-to-day activities through short questionnaires 
answered throughout the day [107]. These questionnaires are com-
pleted by users in their actual environment, more closely replicating 
natural behaviour compared to controlled lab studies [80, 107]. The 
ESM questionnaire we employed aimed to capture user behaviour 
that may not be readily apparent in the sensor data, thus enabling 
a more comprehensive inference of context. 

To understand this context, we asked two questions: 
(1) Where are you right now? 

Participants were presented with seven multiple-choice op-
tions (Fig. 4) and asked to select one that best represented 
their current location. The options included Home (Indoors), 
Home (Outdoors), School/Work (Indoors), School/Work (Out-
doors), Outdoors (Not at home), Travelling in a vehicle, or 
Other. For participants who chose "Other," they were fur-
ther prompted to provide a brief description of their specifc 
location. 

(2) What are you doing right now? 
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Participants provided free-text responses (Fig. 5) by describ-
ing the primary activity they were engaged in during the 
fve minutes preceding the questionnaire. Participants were 
asked to provide a single sentence to capture this informa-
tion. 

Figure 4: ESM Interface - Question 1. 

Figure 5: ESM Interface - Question 2. 

We designed our questionnaire to be brief and easy to complete 
to minimise participant fatigue. We aimed to avoid burdening par-
ticipants with frequent or lengthy responses, as such requirements 
can cause annoyance [45]. Given our focus on capturing context 
from participants’ self-reports in real-time, it was important for 
them to spend minimal time on answering the questions to ensure 

timely responses. The frst question utilised predefned categories 
that represent common situations encountered in adults’ daily lives 
[70]. This approach allowed participants to select from general loca-
tion types without providing specifc details. The second question 
asked participants to summarise their current activity in a single 
sentence. Categories were not provided for this question, as it is 
challenging to categorise the wide range of possible activities in 
which participants may be engaged. 

4.3 Study procedure 
Participants initially expressed their interest in the study by com-
pleting an expression of interest form. Following this, they received 
a Plain Language Statement that provided detailed information 
about the study, along with a consent form to be completed. Upon 
returning the consent form, participants were provided with an 
instruction sheet outlining the process of setting up the applica-
tion on their smartphones, joining the study, and completing the 
ESM questionnaires. A three-day testing period followed to ensure 
compatibility of participants’ smartphones with AWARE-Light and 
accurate capture of sensor data. Participants whose smartphones 
were incompatible due to accessibility setting issues (� = 2) or expe-
rienced force-closing of the application (� = 1) were excluded from 
the study. Following the testing period, 21 participants proceeded 
with the remainder of their two-week study period. 

In addition to passive data collection, participants were prompted 
to complete ESM questionnaires fve times a day, with two-hour 
intervals between 10 a.m. and 6 p.m. These questionnaires were 
delivered via notifcations that remained visible for 15 minutes in 
the smartphones’ notifcation menu. Considering that users tend 
to activate their phone screens within 15 minutes of inactivity [41], 
they were likely to encounter the questionnaire before the notifca-
tion expired, even if it was received shortly after their screen was 
turned of. If the notifcation expired, participants were unable to 
access the questionnaire until the next scheduled time. The ques-
tionnaires were scheduled at the same time each day to capture 
potential changes in participant behaviour during consistent time 
periods across diferent days. 

Upon completing the two-week study period, participants were 
asked to fll out a debriefng questionnaire. This questionnaire 
aimed to gather feedback on participants’ experience during the 
study, including the ease of using the application, participants’ 
comfort level with data collection from each sensor, reasons for 
turning of any sensors, and overall feedback on the study (see the 
Appendix for details). The study concluded with participants being 
reimbursed upon completion of this questionnaire. 

5 RESULTS 
In our study, we gathered a total of 7,004,867 screens, 135,414,272 
phrases, and 4,264,737,110 characters. The most active participant 
viewed 1,076,069 screens and 13,941,219 phrases, while the least 
active participant had 25,200 screens and 158,555 phrases. On aver-
age, the time between screen updates was 0.87 seconds. The most 
"dense" screen recorded comprised 5,245 phrases and was 127,593 
characters long. The screen text table has a total size of 12.69 GB, 
with each participant generating an average of 43.16 MB of screen 
text data per day. 
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(a) Total number of screens for all participants. (b) Total number of screens for P5. 

Figure 6: Total number of screens for each hour of the day. 

In contrast, we collected only 32,199,892 characters in keyboard 
input, which represents 0.76% of the characters captured from 
screen text. This highlights the signifcantly richer interactions 
that can be captured within screen text compared to keystroke 
data. 

5.1 Screen text and user behaviour 
Various techniques, including NLP methods (e.g., keyword extrac-
tion, sentiment analysis, named entity recognition, topic modelling), 
corpus linguistics (e.g., phraseology, lexicogrammar, register, for-
mal language usage), and statistical analyses, can be employed 
to analyse text. Our focus is to present the applicability of these 
approaches to the collected data. The presented measures are aggre-
gated across hours and days of the week, encompassing interaction 
frequency (total screens), information density (phrases per screen), 
and text sentiment. 

Firstly, examining screen text patterns over time reveals indi-
vidual user characteristics and general phone usage trends. Across 
all participants, the lowest number of screens is captured from 3 
a.m. to 5 a.m., constituting 2.06% of total screens, while the highest 
occurs from 8 p.m. to 10 p.m., comprising 20.37% (Fig. 6a). While 
this trend is generally consistent, individual behaviours may dif-
fer. For instance, P5 peaks at 5 a.m. (9.03%) and from 6 p.m. to 8 
p.m. (21.46% total) but shows minimal usage during daytime from 
8 a.m. to 11 a.m. (3.92% total) (Fig. 6b). Examining daily trends (Fig. 
7a), Thursday consistently records a higher number of screens than 
other days from 1 p.m. onward, and Friday peaks at 2 a.m. Individual 
patterns are discernible as well; for instance, P2 exhibits alternating 
increases and decreases in screens viewed from morning to evening, 
a pattern consistent across each day (Fig. 7b). 

For all participants, the average number of phrases per screen, 
refecting information density, peaks at 7 a.m., averaging 27.49 
phrases. This is 2.17 times higher than the lowest average at 5 a.m., 
which stands at 12.68 phrases (Fig. 8a). This overarching trend is 
further elucidated for each participant. For instance, P12 exhibits a 
peak at 7 a.m. with an average of 49.15 phrases, and a similar peak 
at 10 p.m., averaging 48.19 phrases. Interestingly, this participant 

views an average of 4.87 phrases per screen from 12 a.m. to 6 a.m., 
constituting less than 10% of their peak at 7 a.m. (Fig. 8b). Exploring 
the hourly average number of phrases per screen across diferent 
days of the week reveals no noticeable similarities. 

To showcase the potential for further linguistic analysis, we 
conduct sentiment analysis on all screen text using the VADER 
(Valence Aware Dictionary and sEntiment Reasoner) model [52]. 
After pre-processing phrases by removing stop words, we concate-
nate all phrases of a screen into one string, tokenize the string, 
and apply the VADER model. The sentiment score ranges from 
-1 (most extreme negative) to 1 (most extreme positive), with 0 
indicating neutral sentiment. The lowest average text sentiment 
occurs between 12 a.m. and 5 a.m., while sentiment remains stable 
for the rest of the day. All average hourly sentiments are positive 
(Fig. 9a). Some participants deviate substantially from this overall 
trend; for instance, P15 engages with content of positive sentiment 
mostly from 3 a.m. to 10 a.m. Overall, we observe that the average 
sentiment generally decreases from 12 a.m. to 5 a.m. on each day, 
then increases at 6 a.m. and fuctuates little throughout the day (Fig. 
10). This trend is consistent across each day. 

5.2 Screen text and app behaviour 
Analysing screen text from various apps can help classify them 
based on the type and content of text they display. Using Android’s 
package naming system, each unique package name is linked to a 
specifc app. We employ the app categorisation dataset by Schoedel 
et al. [93] to group apps into categories like social media, trans-
portation, and gaming. Apps not in this dataset are labelled as "NA." 
We demonstrate categorising apps based on "density" (phrases per 
screen) and "dynamics" (phrase diference). Additionally, we present 
aggregated sentiment analyses for each app, exploring commonly-
viewed content and its variations between users. These analyses 
highlight the semantics in screen text, ofering insights into app 
usage and user behaviour. 

The average number of phrases per screen and the average 
phrase diference for each app show a strong positive correlation, 
� (392) = .63, � < .001 (Fig. 11a). Some apps deviate from this trend; 
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(a) Total number of screens for all participants. (b) Total number of screens for P2. 

Figure 7: Total number of screens for each hour and day of the week. 

(a) Phrases per screen for each hour of the day for all participants. (b) Phrases per screen for P12. 

Figure 8: Phrases per screen for every hour of the day. 

(a) Sentiment for all participants. (b) Sentiment for P15. 

Figure 9: Sentiment for each hour of the day. 

for instance, the Samsung Safety Information app has an average The average number of phrases per screen and the average 
of 206.20 phrases per screen but only an average phrase diference phrase diference for each app category exhibit a strong positive 
of 11.68 phrases. Similarly, the Stockbit and CoinMarketCap apps, correlation, � (19) = .84, � < .001 (Fig. 11b). Internet-related apps 
with averages of 101.11 and 75.68 phrases per screen, respectively, have the highest averages for both phrases per screen (92.41) and 
exhibit average phrase diferences of 59.05 and 45.10 phrases. In phrase diference (25.38) (not displayed in the fgure for clarity). 
both cases, the average phrase diference is above 50% of the average However, weather-related apps deviate from the general trend, dis-
number of phrases per screen. playing low density but highly dynamic content, with an average 

of 17.99 phrases per screen and a phrase diference of 17.59. 
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Word Count Word Count Word Count Word Count 
relevant 1070 cal 11348 taylor 3964 foo 3197 
unit 856 km 7875 swif 3248 fighters 3197 
teaching 758 distance 5473 version 1832 bon 3031 
lecturer 689 set 5057 playlist 1749 jovi 3016 
information 642 heart 4995 red 1628 led 2490 
accounting 535 sleep 4949 loving 1174 zeppelin 2490 
professional 535 hr 4811 english 980 remaster 1747 
academic 535 fitbit 4793 never 927 jukebox 1594 
cyber 535 rate 4162 chou 879 postmodern 1592 
security 535 2023 4100 g.e.m 860 rock 1346 

App: SEEK (Job-Finding) 
(All Participants) 

Category: Health 
(All Participants) 

App: Spotify (Music) 
(P8) 

App: Spotify (Music) 
(P11) 

Table 1: Top 10 words by occurrence, grouped by App and App Category. 

Figure 10: Sentiment for each hour and day of the week (all 
participants). 

Based on the VADER model, a sentiment score of below -0.05 is 
considered negative, between -0.05 and 0.05 is considered neutral, 
and above 0.05 is considered positive. Out of the 394 apps that 
participants used, 263 apps have a positive average sentiment, 108 
apps have a neutral average sentiment, and 23 apps have a negative 
average sentiment. The SEEK app (job fnding) has the highest 
average sentiment, at 0.96, whereas the Samsung Safety Information 
app has the lowest average sentiment, at -0.95 (Fig. 12a). 

Each app is grouped into one of 20 categories based on its primary 
functionality, with the remaining apps grouped as "NA". Out of the 
21 app categories, 19 categories have a positive average sentiment, 
and 2 categories have a neutral average sentiment. Career-related 
apps have the highest average sentiment, at 0.75, while Time-related 
apps have the lowest average sentiment, at -0.05 (Fig. 12b). 

Identifying the most frequently occurring words within each 
app or app category allows for content categorisation and under-
standing individual preferences. Table 1 displays the top 10 highest-
occurring words across all participants for a specifc app and app 
category, along with a comparison between two participants (P8 and 
P11) for the same app. For instance, the SEEK app, a job-searching 
application, presents content about teaching and lecturing jobs, as 
well as jobs related to accounting and cybersecurity. Health-related 
apps contain information related to exercise (cal, km, distance, ft-
bit) and cardiovascular health (heart, rate), along with sleep. P8 
predominantly uses the Spotify app (music) to fnd Taylor Swift’s 
music, while P11 primarily views content related to rock music, 
including the Foo Fighters, Bon Jovi, and Led Zeppelin. 

5.3 Screen text and other sensors 
We further explore how our screen text data can be integrated with 
other sensor data to understand context from diferent perspectives. 

5.3.1 Screen text across geographic locations. We analyse geographic 
variations in screen text to uncover smartphone usage patterns in 
physical spaces. Using latitude and longitude data, we group lo-
cations within a 10-meter radius, reducing visual clutter while 
maintaining data precision. Figures (Fig. 13a, 13b, 13c) illustrate 
our fndings. 

Comparing a park (middle-bottom of the map) and a business 
area (left of the map), we note fewer recorded locations in the 
park, indicating higher activity in the business area. In the park, 
participants generally view neutral content (Fig. 13a). Conversely, 
the business area exhibits diverse sentiments, with positive clusters 
near the cinema and bar. Despite a higher screen count (Fig. 13b), the 
park sees fewer phrases per screen (Fig. 13c), suggesting frequent 
phone use during park traversal with minimal content consumption. 
In the business area, patterns are less distinct, but notable screen 
counts occur at the bar, restaurant, and road intersections. 

5.3.2 Screen text and connectivity. We examine the impact of social 
context, measured through Bluetooth and Wi-Fi connectivity, on 
smartphone screen content [6, 61]. Bluetooth RSSI values below -70 
dBm, indicating lower social interaction [61], lead to a increase in 
screens viewed (111,695 screens per bin), phrases per screen (24.20), 
and phrase diference (12.65) compared to higher social interaction 
(Fig. 14a, 14b, 14c). However, no discernible diferences in sentiment 
are observed (Fig. 14d). Similarly, weak Wi-Fi RSSI values below -70 
dBm [77] result in increased screens viewed (136,240 screens per 
bin) and phrase diference (8.14) (Fig. 15a, 15c), but no diferences in 
phrases per screen or sentiment (Fig. 15b, 15d). Battery levels below 
15% lead to a reduction in screens viewed (39,976 screens per bin) 
(Fig. 16a) compared to levels above 15%, without afecting other 
metrics (Fig. 16b, 16c, 16d). Participants tend to minimise phone 
use as battery levels decrease. 

5.3.3 Screen text and ESM. We analyse responses from the second 
question of our ESM questionnaires, categorising them into 11 
categories detailed in the Appendix. For each ESM response, we 
retrieve the participant’s screen text from the fve minutes prior to 
receiving the questionnaire, allowing us to study the relationship 
between their activity and screen content. 

The highest average number of screens viewed occurs during 
shopping, contrasting with the lowest during online searching (Fig. 
17a). In terms of the average number of phrases per screen and 
average phrase diference, online searching and housework exhibit 
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(a) All apps. Each data point represents one app. (b) All app categories. Each data point represents one app category. 

Figure 11: Average number of phrases per screen vs. Average phrase diference. 

(a) All apps. Each app is represented by a single verti-
cal bar. Apps are ranked from highest sentiment (left) 
to lowest sentiment (right). App names are omitted (b) All app categories. Each app is represented by a 
to improve legibility. single horizontal bar 

Figure 12: Average sentiment. 

(a) Average sentiment. (b) Total number of screens. (c) Average number of phrases per screen. 

Figure 13: Statistics per location in the study (selected subset). 

the highest and lowest values, respectively (Fig. 17b, 17c). Regarding 5.4 Self-report data 
sentiment, it peaks during housework and exercise, while it is lowest We asked participants to provide self-report feedback on how they 
during socialising and rest (Fig. 17d). perceived smartphone sensing using the AWARE-Light application. 
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(a) Average number of screens. (b) Average number of phrases per screen. 

(c) Average phrase diference. (d) Average sentiment. 

Figure 14: Average statistics per Bluetooth RSSI. Error bars denote standard error (SE). 

Each question was answered on a scale from 1 (strongly disagree) 
to 7 (strongly agree); the details are provided in the Appendix. We 
fnd that it is generally easy for participants to use the app and they 
are comfortable using it. Participants also indicate that they tended 
to be more conscious of their smartphone use and were somewhat 
concerned about their privacy while sensing occurred. Given an 
opportunity in future studies, they generally would be interested 
in receiving daily feedback about their phone usage. 

Table 2: Self-report of perceptions when using the AWARE-
Light application. 

Perception Mean SD 
Ease of Use 5.81 1.12 
Comfort of Use 5.14 1.39 
Increased Consciousness of Smartphone Use 4.81 1.75 
Concerns About Privacy 5.10 1.45 
Daily Feedback About Smartphone Use 5.71 1.38 

We also aimed to gain an understanding of how participants felt 
towards data collection from each sensor to see how our screen 
text sensor compares with existing sensors. Each question was an-
swered on a scale from 1 (extremely uncomfortable) to 7 (extremely 

comfortable); the details are provided in the Appendix. Participants 
were generally comfortable with the battery, screen state, Blue-
tooth, proximity, Wi-Fi, network, and applications sensors, as these 
sensors reveal little information and cannot be used to identify 
users. The notifcations, communication, and location sensors were 
perceived neutrally, as they could be used in conjunction with other 
sensors to gather information specifc to a user. Participants felt 
slightly uncomfortable towards the screen text and keyboard sen-
sors, likely due to the ability for these sensors to capture direct 
user interactions with their phone, which may include sensitive 
information. 

During the study, 7 participants intermittently disabled specifc 
sensors, while the remaining 14 participants chose to retain the 
default settings over the entire study period. The screen text sensor 
was most-commonly disabled, being disabled by 4 participants 
for an average of 1.27 days during the study. The application and 
location sensors were disabled by 3 participants each, for an average 
of 5.08 hours and 9.33 hours, respectively. Participants were clearly 
told that they would not be penalised in any way if they chose to 
disable sensors. 

Participants who disabled sensors generally did so due to privacy 
concerns when viewing sensitive content: 
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(a) Average number of screens. (b) Average number of phrases per screen. 

(c) Average phrase diference. (d) Average sentiment. 

Figure 15: Average statistics per Wi-Fi RSSI. Error bars denote standard error (SE). 

Table 3: Self-report of comfort for each sensor activation. 

Sensor Mean SD 
Batery 6.14 1.24 
Screen State 5.95 1.07 
Bluetooth 5.43 1.16 
Proximity 5.38 1.53 
Wi-Fi 5.24 1.70 
Network 4.86 1.98 
Applications 4.57 1.69 
Notifications 4.19 1.75 
Communication 4.14 1.68 
Location 4.10 1.87 
Screen Text 3.05 1.96 
Keyboard 2.86 1.74 

“[I disabled the] screen text [sensor] on occasion as there 
were sensitive information related to work and personal 
life that I didn’t feel comfortable sharing.” - P8 

“During the time of launching certain private appli-
cations, I turned of all the sensors for a short time.” -
P5 

Some participants who did not disable any sensors see potential 
benefts of smartphone sensing, or are less concerned about privacy 
due to also regularly using other devices: 

“I did not turn of any sensors. Initially I was a bit hesi-
tant about the sensing, and was conscious about it when 
I was using my phone. However, as time went on, the 
sensing stood out less to me and I became more com-
fortable with it. I guess if there was a meaningful end 
result to the sensing, such as detailed analyses of my 
app usage or phone habits, I would not mind having my 
data collected in this way.” - P19 

“I mostly use my phone for reading stuf on the internet 
and some messaging, but I also use my laptop a lot, so I 
didn’t feel the need to turn of phone sensors, as I could 
always use my laptop for communication.” - P10 

We also gather general feedback from participants about the 
study, where they express being more aware of their smartphone 
use while taking part: 

“In my opinion, it is a good study and encouraged me 
to be more aware of [my] smartphone use in everyday 
life.” - P15 
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(a) Average number of screens. (b) Average number of phrases per screen. 

(c) Average phrase diference. (d) Average sentiment per Battery Level. 

Figure 16: Average statistics per Battery level. Error bars denote standard error (SE). 

“I liked it. The questions about what I was doing were 
interesting – made me more aware of my phone usage 
habits.” - P19 

6 DISCUSSION 
We ran this study to validate our screen text sensor and understand 
its behaviour "in-the-wild". We collected diverse screen text data 
from websites and mobile apps, which we believe is accurate and 
representative of actual smartphone use. Our study indicates that 
the data collected by the sensor is timely, precise, and complete. The 
data appears to be collected in real-time without any observable 
delays. We have visualised and analysed the collected data in a 
number of ways. The data appear to follow the daily, weekly, and 
semantic patterns that we expected without any notable anomalies. 
Furthermore, we fnd that data can be reliably associated with 
the applications that generate it, and our analyses show that the 
collected text match our expectations. 

In addition, we have shown that the sensor data can be reliably 
cross-referenced against any of the other sensor data that can be 
collected by AWARE-Light, including with ESM questionnaires. 
This opens up a fascinating range of possibilities for new types of 

experiments and feld studies. At the same time, we also identify a 
number of challenges and limitations in deploying the sensor. We 
fully unpack these in our discussion. 

6.1 Data richness 
Unlike traditional time-based phone usage or screen time track-
ers, which ofer only a broad indication of time spent on each app, 
analysing screen text provides richer insights into phone usage be-
haviour. Time-based trackers merely measure how long the phone 
screen is on and which apps are displayed [44], without considering 
actual phone use or idle periods. Moreover, they don’t capture the 
level of user interaction, distinguishing between passive content 
consumption and active information generation. Our sensor mea-
sures total phone usage and interactions with greater precision. For 
instance, the time diference between screens serves as a metric 
for understanding the frequency of phone use. The total number of 
screens captured refects the interactivity between a user and their 
phone, as a new screen is recorded only when the screen content 
changes. 

Existing studies primarily focus on app usage to understand user 
behaviour [59, 68, 128, 129]. However, user interactions within an 
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(a) Average number of screens. (b) Average number of phrases per screen. 

(c) Average phrase diference. (d) Average sentiment. 

Figure 17: Average statistics per ESM category. 

app can vary signifcantly across categories, times of the day, and 
users [22], making it challenging to generalise behaviour from app 
usage alone. Analysing phrases allows for studying semantic mean-
ing, understanding content engagement, and identifying patterns 
related to information consumption. Natural language processing 
can extract text sentiment to summarise the overall mood of user-
interacted content. The number of phrases on a screen serves as an 
information density measure, indicating richer content. Examining 
total phrases viewed provides insights into user preferences for 
reading longer or shorter text. 

Task switching on mobile phones is often studied by analysing 
app switches [37, 69]. However, the purpose of each app can vary, 
making it challenging to understand content changes as users move 
between screens. Examining phrase diferences between screens 
helps discern newly generated or retained content, ofering insights 
into user engagement with specifc topics or activities that involve 
multiple applications. Phrase diferences can also measure content 
diversity and change, with larger diferences suggesting a broader 
range of content and potentially making the app more engaging 
for users. 

Screenomes have been used to capture a rich array of smartphone 
interactions [85]. By capturing a screenshot every few seconds 
and applying OCR, screenomes can record text and image content 
viewed by users. Our screen text sensor captures all text within the 

screen’s UI using Android’s accessibility API, meaning that it may 
pick up noise due to encountering invisible text. Although OCR will 
not pick up invisible elements, its lower accuracy with recognising 
text inherently generates noise that can be difcult to identify and 
correct within a large dataset. Additionally, the need for screenomes 
to capture and perform OCR on screenshots imposes a limit on the 
rate of data collection and analysis, which commonly occurs in 
fve-second intervals [82]. While the screen text sensor collects 
only text and does not capture images and videos, the efciency 
of analysing plain text data enables real-time data collection and 
analysis, which can be applied to generate recommendations and 
interventions in situ. The screen text sensor can be efective in 
facilitating data collection and storage for studies on smartphone 
usage where text is the primary focus or there is a need for real-time 
analysis. On the other hand, studies that require capturing image 
and video content can be conducted using screenomes. Therefore, 
researchers should consider their study objectives when deciding 
on the most appropriate method. 

6.2 Behaviour modelling 
In our study, we showcase techniques for comprehending user and 
app behaviour on smartphones using screen text data. 

Understanding user behaviour from smartphone use character-
istics becomes feasible through screen text analysis. It sheds light 
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on digital context, capturing sentiments and content frequency 
throughout the day. When integrated with other movement-based 
sensors or wearables, users can be profled based on both digital 
interactions and physical context. Passive sensing, prevalent in 
digital health felds [24, 98, 115, 124], allows unobtrusive data col-
lection. Although existing technologies track physical behaviour, 
assessing mental well-being in situ remains challenging. The ubiq-
uity of smartphone use allows screen text analysis to delve deeper 
into people’s feelings in their natural setting. By combining screen 
text with other sensor data, we enhance context inference by con-
sidering multiple dimensions of behaviour. Existing sensors, such 
as accelerometer/gyroscope movement [84] and connectivity [26], 
capture physical surroundings and social context. The addition of 
smartphone and mobile context via screen text prompts critical 
questions: 

• How do people’s viewing habits vary across diferent physi-
cal locations? 

• What types of content do people tend to view when com-
muting? 

• How does proximity to others afect smartphone information 
consumption? 

Answering these questions can advance research across felds. For 
instance, medical practitioners can identify patients’ smartphone 
viewing habits and mobility information to detect anomalies [11, 
90]. Understanding consumer interests is vital for marketing, facili-
tated by screen text. Market research can analyse locations gener-
ating searches relevant to products and services [43]. Screen text 
analysis in education can profle students’ study habits, enabling 
personalised learning [39, 88]. 

Screen text attributes also allow inference of app behaviour. 
Tracing content across diferent apps reveals if certain apps are 
used together for specifc tasks. For app developers, this insight can 
improve functionality by incorporating technologies from other 
apps or streamlining app fow for easier switching. Apps can be 
profled based on displayed information and its rate of change. 
Social media apps may display digestible content with frequent 
updates, while government apps may ofer informative content 
with less frequent changes. Comparing intended purposes with 
user interactions informs on-screen content delivery design. 

Additionally, the sentiment of content within each app can in-
form usage patterns and user emotions. App usage between users 
can be examined to understand how the sentiment of content within 
one app can vary across individuals, representing diferences in the 
types of social media or news viewed. Patterns in app-switching 
can be analysed in greater detail, including identifying how the 
sentiment of content viewed changes as users switch between apps. 
This could be benefcial in classifying whether certain apps are 
"complementary" in sentiment, where they are used consecutively 
to retain (e.g. using a "positive" app followed by another "posi-
tive" app) or alter mood (e.g. using a "negative" app followed by a 
"positive" app). 

6.3 Further approaches to Screen Text analysis 
Our analysis focuses primarily on validating our screen text sen-
sor through understanding the properties of collected data. These 

properties and screen text metrics can inform a wide range of be-
haviours when examined with its corresponding semantic content. 
For example, analysing people’s reading habits involves consid-
ering how much time and how often they interact with diferent 
types of content. More engagement, measured by the number of 
screens viewed, suggests a higher level of interest. Additionally, the 
thoroughness of a person’s reading can be inferred based on the 
information volume and variability of the text, measured by the 
number of phrases per screen and phrase diference, respectively, 
as well as how long they spend on each screen. For instance, if a 
user rapidly browses through numerous screens featuring a sub-
stantial volume of content and frequent changes, it may suggest 
a lack of interest in the topic or a more cursory reading approach. 
Specifcally, analysing screen text allows for studying the infuence 
of natural reading habits on factors such as academic achievement 
[2, 10] and social behaviour [87, 113], as opposed to within a lab 
setting. App developers can also leverage this insight to enhance 
their app design. For example, they could analyse which content 
types maximise user retention and encourage prolonged reading. 
Additionally, understanding how to strategically position content 
to optimise scrolling and engagement can help craft an efective 
and user-friendly app interface. 

Nevertheless, there are many possibilities for screen text analysis 
that extend beyond the methods we explore. Examining screen text 
metadata allows us to study on-screen textual features, encompass-
ing aspects like UI structure and text sources. These features can be 
extended to broader contexts, facilitating exploration of phenom-
ena such as infnite scrolling and diferentiation between passively 
consumed and actively typed text. The semantics of screen text can 
be analysed for studying how people communicate within diferent 
scenarios. This may include studying workplace relations to see 
how people communicate with their managers in contrast to people 
they manage, which could be refected in how their tone of speech 
changes [55]. Properties of formal versus informal communication 
can also be investigated, such as analysing the diferences in average 
text length and common topics between email and text messaging. 
Furthermore, people’s use of language in relation to particular as-
pects of their work, such as their perceptions of cybersecurity, can 
be assessed [56]. 

Additionally, bi-lingual or multi-lingual analysis can also be 
conducted, aiming to understand if people who interact with smart-
phone content from multiple languages view diferent information 
or perform diferent tasks based on the language they are using, 
such as product reviews [32] or using personal assistants [117]. 
These fndings can help to distinguish nuances in smartphone use, 
allowing for greater accuracy in inferring context of smartphone 
users. Broader questions about our use of language can also be 
investigated. For example, it is possible to study how the use of lan-
guage varies across diferent age demographics [20], how language 
itself evolves (such as with the introduction of emojis [116]), and 
how ChatGPT-like services can be used in conjunction with our 
sensor to provide recommendations, summaries, and explanations 
[1]. 

While we have highlighted screen text metrics like phrase difer-
ence and sentiment, it is important to recognise the rich variety of 
metrics available. Each study requires an analysis of metrics tailored 
to the unique aspects of the studied phenomenon. For instance, in 
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studies of workplace relations, researchers may focus on the tone 
of speech in texting using tools like Linguistic Inquiry and Word 
Count (LIWC) [104]. This approach involves designing metrics that 
precisely capture and diferentiate between the nuances of various 
tones, which can inform behavioural inference. Conversely, explo-
rations of how various age groups use language may narrow down 
to specifc elements like slang [49] or emoji analysis [60], which 
could reveal distinctions between generations [23]. The broadness 
of our screen text sensor allows for the application of a wide range 
of analysis techniques and metrics, providing researchers with the 
fexibility to align their analyses with the needs of their studies. 

6.4 User perceptions 
Previous work has shown that people are willing to share data 
captured on their smartphones with scientists who are engaged in a 
worthwhile cause, and often this behaviour can be considered as a 
donation of data [72]. Struminskaya et al. [100] found that the most 
common reason for unwillingness in sharing data is due to privacy 
and anonymity concerns. To increase transparency and privacy in 
mobile sensing, platforms should provide control to users over what 
data they choose to share [17]. Our study sheds some light on par-
ticipants’ perceptions of the various sensors on their smartphones, 
including the screen text sensor that we have developed. On av-
erage, participants felt slightly uncomfortable with their screen 
text being captured. Although we did not collect passwords, some 
participants naturally felt more alert when viewing private content, 
which is consistent with previous studies [99]. 

However, participants appreciated the ability to disable sensors 
when they did not feel comfortable sharing their data and re-enable 
them once they had completed their current task. However, we note 
that only one-third of the participants disabled any sensors during 
the study, demonstrating that they did not fully utilise this control 
[62]. We fnd that even though keyboard inputs are captured as 
part of screen text, people felt less comfortable on average with 
keyboard sensing. This could be due to the modality of interaction 
with each of these sensors infuencing perception. For the keyboard 
sensor, "tracking" the action of typing on the keyboard may induce 
more caution for users as they are actively producing content. In 
contrast, viewing text on the phone screen may not necessarily 
carry this connotation, as users are generally engaging in a passive 
state of interaction. 

The open-source nature of our sensor allows researchers to 
customise the tool based on their needs. We have demonstrated 
password-detection as one method for enhancing privacy, though 
there are many more that could be implemented using similar tech-
niques based on the research context and the precision of data 
required. We emphasise that the range of collected data can vary 
based on the studied phenomenon, and often does not need to en-
compass all screen text. We have earlier mentioned the ability to 
confgure AWARE-Light studies such that screen text data collec-
tion can be confned to nominated apps (or alternatively certain 
apps can be excluded). Beyond this confguration option, one could 
modify the AWARE-Light code such that flters are added, whereby 
only certain screen text content is collected and saved to the data-
base. For example, studies related to ftness may capture only screen 
text containing keywords associated with ftness [108], which could 

indicate the frequency of which users engage in physical activity. 
Research on understanding user behaviour on Twitter could limit 
data collection to only the Twitter app. Despite this restriction, 
the screen text sensor enables the capture of various interactions, 
including creating, viewing, or re-posting posts. This capability 
enhances existing social media studies, enabling a more thorough 
investigation of user activity to understand individual behaviour, 
rather than solely analysing behaviour across all social media users 
[126]. Additionally, studies that do not require participant iden-
tifcation can further remove information from screen text data 
such as email addresses, phone numbers, and people names as an 
additional security measure that can alleviate participant concerns 
[14]. 

6.5 Lessons learned 
Our study has provided valuable insights into the implementation 
and considerations associated with our novel sensor, and we aim to 
share key learnings for researchers intending to employ this sensor 
in their studies. Many of these insights were gained through exten-
sive trial-and-error and technical troubleshooting, highlighting the 
need for careful consideration to ensure smooth and uninterrupted 
data collection. 

Firstly, researchers should be mindful of the text variability dis-
played on smartphones, which can be quite diverse. One considera-
tion is the database table confguration for storing screen text. We 
recommend using the MEDIUMTEXT or LONGTEXT data types for 
the screen text column due to potential encounters with large vol-
umes of text, exceeding the default TEXT data type limit. This issue 
is particularly relevant when dealing with hidden text on web pages, 
where the 65,535-character limit may be exceeded, leading to data 
transfer blockages and preventing further data uploading to the 
database until this data is discarded. Utilising the MEDIUMTEXT 
(16,777,215-character limit) or LONGTEXT (4,294,967,295-character 
limit) types can address this limitation. 

Additionally, the database table for storing screen text data 
should be confgured using the utf8mb4 character set (4-Byte UTF-
8 Unicode Encoding) to enable the capture of emojis, which is not 
possible with utf8mb3. For longitudinal studies or those with large 
sample sizes, researchers must consider database storage capacity. 
Our study, spanning two weeks and 21 participants, accumulated 
12.69 GB in screen text data, underscoring the potential for sub-
stantial storage requirements in larger and longer-term sensing 
scenarios. It is advisable to calculate the total storage needed based 
on the study size and duration, allocating additional storage to 
accommodate potential outliers. 

Given that our sensor captures all screen text, researchers should 
be aware of the presence of non-printable ASCII characters, which 
may be retained using their ASCII codes (e.g. the null character is 
often represented as \x00). These characters, if unidentifed, can 
cause errors during data analysis or when imported into a code 
editor. Precautions should be taken during the data analysis phase 
to screen for such anomalies and sanitise the data accordingly. 

To address participant discomfort regarding screen text collec-
tion, AWARE-Light provides researchers with the fexibility to con-
fgure which applications are included or excluded when captur-
ing screen text. For instance, a study focusing on web browsing 
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behaviour may choose to collect data solely from web browsers, 
excluding sensitive apps like messaging and banking apps. This 
selective approach can enhance participant comfort during the 
study. 

Lastly, we acknowledge that our sensor may not be universally 
compatible with every Android version or smartphone make. The 
reliance on Android’s accessibility services necessitates participant 
permission, but certain phones may automatically disable these 
services after a brief period. Although we instructed participants to 
disable battery optimisation, which is a primary cause for system-
disabling of accessibility services, some phones do not allow for 
prolonged use of accessibility by third-party applications. To ad-
dress this, we implemented a "trial" phase for potential participants, 
allowing us to monitor data uploads over a few days to confrm 
compatibility. This helps identify participants who may not upload 
data or upload incomplete data due to compatibility issues. 

6.6 Limitations and Future Work 
Our sensor only collects screen text provided it is available to the 
operating system as raw text. Unlike previous work, our sensor does 
not detect text within images or graphics. This potentially limits 
our data collection, but at the same time ensures that our sensor 
can be easily deployed to large numbers of participants without 
computational consequences. 

Furthermore, our screen text sensor uses Android’s accessibility 
services to capture text from phone screens. Therefore, we may 
capture hidden text within certain apps, mostly Internet brows-
ing. For example, websites sometimes use hidden text either for 
accessibility purposes, or as a search engine optimisation strategy. 
Common methods for storing hidden text include positioning text 
beyond the screen limits of the page, matching the text colour with 
the background colour, or using a text font size of zero. Although 
they are invisible to users, the Android system still detects and 
stores these texts as they exist as on-screen text nodes. This may 
be misleading for analysis if a screen has large volumes of hidden 
text. Therefore, further work can be done to build on our screen 
text sensor to distinguish between visible and invisible text on each 
screen, such as inspecting each text node for properties infuencing 
visibility. Similarly, we collect the rectangular boundary of each 
text node as its position. However, in some cases, it may be unclear 
where the text is located within the boundary box. Although all 
text is located within its boundaries, various styling such as cen-
tering, font sizes, and padding means that the text may not cover 
the entirety of its boundary box. Given that the boundaries of text 
nodes may overlap, the positions of some text may not be precisely 
inferred. 

Additionally, some participants expressed that they changed 
their behaviour during the study [75]. We note that participants 
may have regulated their behaviour in a manner that appeared 
more socially desirable [123], meaning that we may not have cap-
tured the true behaviour of all participants in a natural setting. To 
increase participant privacy, we provided participants with control 
over enabling and disabling sensors. In doing so, participants who 
alter their behaviour or frequently disable sensors inherently re-
duce the ecological validity of their data, which our tool cannot 
prevent. To facilitate understanding of the reasons behind sensor 

deactivation, AWARE-Light logs instances when users enable or 
disable a sensor. This not only adds another valuable data point for 
analysis but also allows for exploring associations with other data. 
For instance, it can help identify patterns of behaviour preceding 
the users’ decision to disable the screen text sensor or correlate such 
actions with changes observed in other sensors. Gaining further 
insights into why the screen text sensor is disabled can contribute 
to enhancing its design and better addressing privacy concerns. 
To mitigate behaviours that reduce ecological validity, studies em-
ploying our sensor should tailor the scope of data collection to 
the specifc phenomena under investigation. By collecting only 
relevant and necessary information, clearly communicating the 
study’s objectives to participants, and ensuring transparency in 
data collection methods, participants can feel more comfortable in 
their involvement, contributing to a more accurate representation 
of participants’ natural behaviours. 

Whilst AWARE-Light has been developed with security practices 
in mind, ultimately safeguards for the screen text data collected are 
the responsibility of those using this privacy-sensitive tool, both 
those who confgure the data collection setups and those smart-
phone users with AWARE-Light installed on their phone. For those 
responsible for confguring AWARE-Light instances, it is essential 
to set up databases so that they receive data from AWARE-Light 
over SSL-secured transmissions. Furthermore, at-rest encryption 
of the stored data is another security choice. For smartphone users 
with AWARE-Light installed and confgured to collect screen text 
data, they must be clearly informed of the nature of this sensor (in-
cluding which apps screen text is being collected from), and clearly 
informed of the option to disable the sensor if/when they do not 
want such data collected from their phone. 

Overall, our study had a small sample size of 21 participants, with 
a majority being students and staf of our university. Therefore, the 
screen text we collected may largely contain themes that are repre-
sentative of people working in a tertiary education environment. 
As we are validating our screen text sensor, this may have reduced 
the scope of our analysis ideas. Collecting data from a larger and 
more diverse cohort can enable more reliable comparisons between 
participant groups and hypothesis testing. However, we believe 
that the size and demographic of our sample has little efect on how 
we validate our sensor’s technological capabilities. 

7 CONCLUSION 
We have presented a study to validate our screen text sensor that 
gathers text from smartphone interactions. Previous work has col-
lected text from smartphones by either logging keyboard interac-
tions, or taking intermittent screenshots and performing optical 
character recognition. Our work overcomes many of these limi-
tations by collecting screen text continuously, unobtrusively, and 
without the need for computer vision processing. 

In this paper, we have validated the technology and capabilities 
of our screen text sensor in a feld study with 21 participants over 
two weeks. We presented examples of analyses that can be con-
ducted using screen text data, and we suggested multiple possible 
directions for further exploration. Given the ubiquity of screen 
text data, it can be efectively applied across various disciplines 
to investigate specifc behaviours according to researchers’ needs. 
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Hence, a wealth of opportunities exist for exploring the potential 
applications of screen text across diferent domains. 
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A PARTICIPANT DEMOGRAPHICS 
In Table 4 we provide a summary of the participant demographics. 

Table 4: Participant demographics 

ID Gender Age (Years) Education Income ($) Daily Phone Use (Self-Reported Hours) Smartphone Manufacturer 
P1 Female 25 - 34 Bachelor’s degree 20,000 - 29,999 2 - 3 Samsung 

P2 Female 25 - 34 Master’s degree 100,000 - 149,999 >5 Huawei 

P3 Male 18 - 24 Bachelor’s degree 30,000 - 39,999 >5 Samsung 

P4 Female 45 - 54 Master’s degree 40,000 - 49,999 2 - 3 Samsung 

P5 Male 25 - 34 Bachelor’s degree 10,000 - 19,999 >5 Samsung 

P6 Female 25 - 34 Master’s degree >150,000 >5 OnePlus 

P7 Female 35 - 44 Master’s degree 100,000 - 149,999 3 - 4 Samsung 

P8 Male 25 - 34 Bachelor’s degree 90,000 - 99,999 3 - 4 Google 

P9 Male 18 - 24 Some university, but no degree >150,000 >5 Motorola 

P10 Male 25 - 34 Doctoral degree >150,000 3 - 4 Google 

P11 Male 25 - 34 Bachelor’s degree 10,000 - 19,999 2 - 3 Google 

P12 Female 25 - 34 Bachelor’s degree >150,000 3 - 4 Google 

P13 Male 18 - 24 Master’s degree 40,000 - 49,999 4 - 5 Samsung 

P14 Female 18 - 24 Bachelor’s degree 90,000 - 99,999 4 - 5 Samsung 

P15 Female 25 - 34 Bachelor’s degree 20,000 - 29,999 2 - 3 Xiaomi 

P16 Male 25 - 34 Master’s degree 40,000 - 49,999 4 - 5 OPPO 

P17 Male 25 - 34 Bachelor’s degree 30,000 - 39,999 1 - 2 Google 

P18 Female 18 - 24 High school graduate 40,000 - 49,999 2 - 3 Samsung 

P19 Female 18 - 24 Master’s degree 50,000 - 59,999 2 - 3 OnePlus 

P20 Female 18 - 24 Bachelor’s degree 70,000 - 79,999 4 - 5 Samsung 

P21 Male 18 - 24 Some university, but no degree <10,000 1 - 2 Samsung 
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B ESM RESPONSE CATEGORISATION 
In Table 5 we provide a summary of the ESM response categories. 

Table 5: ESM response categories. 

Category Examples 

Eating/Drinking Having Lunch, Drinking Tea, Eating Out 

Entertainment Watching TV, Gaming, Reading 

Exercising Walking, Gym, Rock Climbing 

Housework Cooking, Cleaning, Laundry 

Misc Other Activities 

Online Searching Searching Real Estate, Viewing Online Maps 

Resting Relaxing, In Bed, Napping 

Shopping Geting Groceries, Online Shopping 

Socialising Calling, Visiting Friends, Atending Convention 

Travelling Catching the Train, Driving, Biking 

Working Work Meeting, Studying For Test, Conducting Experiments 
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C DEBRIEFING QUESTIONNAIRE 

C.1 Please rate how you felt towards using the AWARE-Light app 
All self-reported ratings used Likert scales from 1 (Strong Disagree) to 7 (Strongly Agree). 
It was easy to learn to use the app. 
I felt comfortable using the app. 
Using the app made me more conscious of the way I use my smartphone. 
I was concerned about my privacy while using the app. 
If future studies could give me daily feedback about my phone usage, I would be interested in receiving this information. 

C.2 For each of the following sensors, please rate how comfortable you felt with it being activated on 
your smartphone 

All self-reported ratings used Likert scales from 1 (Extremely uncomfortable) to 7 (Extremely comfortable). 
Applications - captures which applications are being used, and which are installed and removed. 
Battery - captures battery levels. 
Communication - captures the number of incoming/outgoing/unanswered calls and SMSs. 
Keyboard - captures characters that are typed using the phone keyboard (excluding passwords). 
Notifcations - captures information about when notifcations are received and its content, if available. 
Screen State - captures whether the phone is on, of, locked, or unlocked. 
Screen Text - captures the text content that appears on the phone screen (excluding passwords). 
Bluetooth - captures information of Bluetooth-enabled devices detected by the phone. 
Location - captures the phone’s location. 
Network - captures information about the phone’s network. 
Proximity - captures the distance between the phone and the object in front of it. 
Wi-Fi - captures information about Wi-Fi networks identifed by the phone. 

C.3 General feedback 

Did you turn of any sensors during the study? Yes/No 
If you turned of any sensors, please indicate which ones you turned of and why you did so. If you did not turn of any sensors, please 
explain what informed your decision. <open ended text entry> 
Please provide any additional feedback about your experience with the study. <open ended text entry> 
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